

ISMRM 2020: 3866

Transition-Band SSFP and EPI Functional MRI on a High-Performance 0.55 T Scanner

Yicun Wang¹, Peter van Gelderen¹, Jacco A de Zwart¹, Adrienne E Campbell-Washburn² and Jeff H Duyn¹

¹Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS ²Cardiovascular Branch, Division of Intramural Research, NHLBI National Institutes of Health, USA

Introduction

- Low-field (<1 T) MRI is advantageous in terms of cost and accessibility
- fMRI is generally considered to benefit from high field
 - Higher sensitivity to BOLD and higher SNR
 - Enable high-resolution fMRI, e.g. laminar fMRI
- However, for fMRI with a modest resolution (a few tens of mm³ volume)
 - Physiological noise dominates thermal noise at high field
 - Difference in temporal SNR (tSNR) between high and low fields may be small
- Advantages of low-field fMRI:
 - Less signal dropout and image distortions from macroscopic susceptibility effects
 - > Shorter T_1 (high efficiency)
 - \blacktriangleright Longer T₂^{*} (longer readout time)

tSNR dependence on image SNR Slope decreases with increasing physiological noise (Triantafyllou et al., 2005)

Introduction

- Transition-band Steady-State Free Precession (SSFP) fMRI
 - The SSFP signal phase is highly sensitive to frequency shift in the transition band
 - The width of the transition band is typically less than 10 Hz
 - Activation modulates voxel signal magnitude via changed intravoxel dephasing
 - > Multiple experiments with varied central frequencies are needed at high field
 - > May gain from the superior field uniformity at low field

Scheffler et al., 2001 Miller et al., 2003

Study Goals

- To evaluate the feasibility of BOLD fMRI at 0.55 T.
- To compare signal stability and sensitivity of SSFP and EPI based BOLD fMRI.

General Design 4-min visual stimulus experiment of each method at the same in-plane spatial resolution (3.3x3.3 mm²) and temporal resolution (TR 1.3 s)

Methods

- Data acquisition from 6 healthy subjects
 - Prototype 0.55 T scanner with high-performance gradients (a ramped-down Siemens 1.5 T Aera)
 - 16-channel retuned receive array from 1.5 T
 - SSFP: 1 slice, 240×180 mm² FOV, 72×54 matrix size, 4 mm thickness, 2° flip angle, 6 ms TR and 3 ms TE (324 ms slice TR), 45 kHz bandwidth. Images were bin-averaged to match TR of EPI and increase tSNR (width=4).
 - EPI: 10 slices, same in-plane resolution, 3 mm slice thickness, 1.296 s TR, 80° flip angle, 85 ms TE, 60 kHz bandwidth, 1.34 ms echo spacing.
 - Concomitant fields and B₀ field drift were compensated by manual adjustment of shims and the main frequency
 - Visual stimulus paradigm: Flashing checkerboard 20.7 s on and 20.7 s off for 254 s.

- Data analysis
 - Preprocessing and analysis were based on "FEAT" in FSL (FMRIB Software Library)
 - Preprocessing included
 - Motion correction with 6 degrees of freedom using "MCFLIRT"
 - Temporal filtering (41.5 s cutoff length)
 - Spatial blurring with 5 mm FWHM (full width at half maximum)
 - Pre-whitening using "FILM" to suppress structured noise
 - General Linear Model: 1 task regressor and its temporal derivative, 6 motion regressors

Results: Temporal SNR

- tSNR was heterogeneous for SSFP due to sensitivity to uncompensated frequency shifts e.g., no shimming in the frontal lobe, and residual concomitant field in the visual area
- tSNR was much more homogeneous for EPI
- In an occipital lobe ROI: 37 ± 8 for SSFP and 30 ± 6 for EPI

Results: T-statistics

- Activation was robustly detected in all 6 subjects using EPI and SSFP
- Activated voxels across subjects: 88±31 for SSFP, 107±10 for EPI at the similar slice position
- Number of the overlapped voxels was 58±10
- T score: 6.9 ± 0.9 for SSFP and 8.0 ± 1.1 for EPI (in their respective activated voxels)

Results: Signal Characteristics

- Percent signal change over 6 subjects was 1.9 ± 0.6 % for SSFP and 2.6 ± 0.4 % for EPI
- Subject respiration induced strong signal oscillation in SSFP, but not in EPI
- Bin-averaging and pre-whitening helped to alleviate the oscillation

Average time courses and spectra over 69 activated voxels

Conclusions

- Both transition band SSFP and EPI fMRI are feasible at 0.55 T
- EPI has advantages in terms of stability and spatial coverage
- SSFP demonstrated higher tSNR but slightly lower sensitivity compared to EPI
- SSFP is susceptible to small frequency changes induced by respiration, concomitant fields and scanner field drift.

Acknowledgments

- Intramural Research Program of the National Institute of Neurological Disorders and Stroke (NINDS), and National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH).
- Assistance of Siemens Healthcare in the modification of the MRI system for operation at 0.55 T under an existing cooperative research agreement (CRADA) between NHLBI and Siemens Healthcare.

Thank you for your attention! Please direct comments to yicun.wang@nih.gov