

ISMRM 2020: 0526

Field-Dependence of White Matter T₁ Through Macromolecular Relaxation and Magnetization Transfer

Yicun Wang, Peter van Gelderen, Jacco A de Zwart, and Jeff H Duyn

Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), USA

ONE COMMUNITY

ISMRM & SMRT Virtual Conference & Exhibition 08-14 August 2020

Declaration of Financial Interests or Relationships

Speaker Name: Yicun Wang

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Introduction

- ${}^{1}H_{2}O T_{1}$ in vivo in the human brain is dependent on
 - Macromolecular proton content (lipids, proteins, etc.)
 - Paramagnetic compounds (dominated by ferritin when contrast agent is absent)
 - \blacktriangleright Main magnetic field strength B₀
- Models for brain tissue T₁
 - A phenomenological power-law model (Bottomley et al., 1984)

 $R_1 = \frac{1}{T_1} = AB_0^{-b}$; b = 0.308 for gray matter, 0.348 for white matter

A multi-regression model (Rooney et al., 2007)

$$R_1 = R'_1 + \alpha_{1m} f_m + \alpha_{1Fe} [Fe] + \alpha_{1CR} [CR]$$

Introduction

- Magnetization transfer between water proton (WP) and macromolecular proton (MP) pools (Edzes and Samulski, 1977; Gochberg et al., 1997)
- Analytical solution $\binom{S_m}{S_w} = a_s \binom{p_s}{1} e^{-\lambda_s t} + a_f \binom{p_f}{1} e^{-\lambda_f t}$
- The two-pool exchange model may be used to understand B_0 dependence of brain T_1
 - > MP relaxation rate $R_m = aB_0^{-b}$ for chain molecules such as proteins and lipids (Korb and Bryant, MRM 2002)
 - \blacktriangleright WP relaxation rate R_w expected to be weakly B₀ dependent (Gossuin et al., MRM 2000)
 - \succ MP fraction f tissue intrinsic property
 - \succ Exchange rate k consists of chemical exchange and dipole-dipole magnetic effects

Free water

Study Goals

- To examine the field dependence of T_1 in white matter (high macromolecular content, i.e. high f) driven by R_m through magnetization transfer
- To validate and determine the model parameters in $R_m = a B_0^{-b}$ in vivo in human brain within clinically relevant B_0 range

General Approach

- Acquisition of Inversion Recovery (IR) and Saturation Transfer (ST) data at 4 fields from 0.55-7 T in the same group of healthy subjects
- Joint analysis of IR & ST data based on the two-pool exchange model to retrieve R_m

4

van Gelderen et al., Neuroimage 2016

Methods

- 8 healthy volunteers (age 21-32 years, mean 24.9; 3 females)
- Four B₀ fields
 - 0.55 T (Prototype scanner, ramped down from 1.5 T Aera), 16-ch receive array
 - 1.5 T Aera, 20-ch receive array
 - > 3 T Prisma, 32-ch receive array
 - 7 T Magnetom, Nova transmit and 32-ch receive
- Single-shot EPI readout, slice-cycled over 10 TR numbers at 10 inversion/delay times
- IR: 12 repetitions (2 references w/o inversion pulse);
- ST: 16 repetitions (4 references w/o saturation pulse);

Sequence parameters at 4 fields

B ₀	Reso.			IR			TE		
	(mm ³)	SENSE	TR (s)	TI (ms)	Time (min)	TR (s)	TD (ms)	Time (min)	(ms)
0.55 T	3.3x3.3x3.0	1	4	10~1200	8.0	3	8~900	8.0	29
1.5 T	1.7x1.7x2.0	2	5	10~1400	10.2	4	9~900	10.8	40
3 T	1.7x1.7x2.0	2	6	9~1600	12.2	4	9~900	10.8	30
7 T	1.7x1.7x2.0	2	6	8~2000	12.2	4	7~900	10.8	24

Methods

- Data analysis
 - Voxel-wise analysis for 3 and 7 T data
 - > In a homogeneous white matter structure Splenium of Corpus Callosum (SCC) at all 4 fields

$$\succ \text{ Curve fitting } \begin{cases} S_{w,IR}(t) = a_{s,IR}e^{-\lambda_s t} + a_{f,IR}e^{-\lambda_f t} \\ S_{w,ST}(t) = a_{s,ST}e^{-\lambda_s t} + a_{f,ST}e^{-\lambda_f t} \\ \text{For 0.55 and 1.5 T, } a_{f,IR} \text{ was assumed to be 0} \end{cases}$$

- ▷ Independently at 3 and 7 T, calculate two-pool model parameters f, k and R_m assuming $S_{m,ST}(t = 0) = 0.93$ and $R_w = 0.4 \text{ s}^{-1}$ (van Gelderen et al., Neuroimage 2016)
- \blacktriangleright At 0.55 and 1.5 T, calculate R_m using averaged f and k from 7 T

> Fit
$$R_m = aB_0^{-b}$$
 (B₀ = 0.55, 1.50, 2.89, 6.98 T)

• Saturation images at 10 TI (inversion times) and 10 TD (delay times)

 $S_{w}(t) = 1 - \frac{M_{z}(t)}{M_{z0}}$

7

TI Number							TD Number																
	Т	2	3	4	5	6	/	8	9	10			1	2	3	4	5	6	7	8	9	10	
0.55 T	X											0.55 T											
1.5 T	XX									X	2	1.5 T											0.25
3Т											0	3 T						A STATE			27-5		
7 T								X		X		7 T											

ISMRM 2020: 0526

Results

- Saturation images at a fixed set of TI (TD)
 - By voxel-wise temporal interpolation (bi-exponential model)
- T₁ increases with B₀
- Saturation transfer effect increases in magnitude and duration with B₀

- Looking at IR data alone
- Strong increase of fast component in the white matter with B₀

- The bi-exponential model well explained the IR&ST data at 4 fields (R²>0.999 for all curves)
- Saturation transfer effect reached 20% at 7 T
- Increasing fast component in the white matter with B₀

Fitting results of SCC data over subjects

- Similar 3 and 7 T results for f and k
- Substantial difference (52.4%) in R_m between 3 and 7 T

Two-pool results in the SCC over 8 subjects

B ₀	λ_{s} (s ⁻¹)	$\lambda_{f}(s^{-1})$	k (s ⁻¹)	f	R _m (s ⁻¹)		
3 T	1.112 ± 0.025	10.60 ± 0.40	1.50 ± 0.05	0.281 ± 0.014	3.89 ± 0.07		
7 T	0.760 ± 0.008	8.19 ± 0.37	1.38 ± 0.09	0.289 ± 0.017	1.85 ± 0.09		

- R_m fitting result in SCC: $R_m = 12.2B_0^{-1.00}$ (R²=0.997)
- In the entire white matter: $R_m = 13.2B_0^{-1.03}$ (R²=0.996)

Conclusions and Discussions

- Joint analysis of IR and ST data in white matter suggests dependence of T_1 on B_0 through macromolecule proton relaxation rate R_m and magnetization transfer effect
- R_m was measured to be 2-20 s⁻¹ in the B₀ range of 0.55-7 T, in agreement with early NMR studies on lipids (*Lee et al., 1972; McLaughlin et al., 1973; Ellena et al., 1985*)
- R_m follows a simple inverse linear dependence on B_0 as $R_m = 12.2/B_0$, a special case of the generally applied power-law dependence
- Despite its capability to explain the IR-ST data in a wide range of B₀, two-pool model is oversimplistic for the chemically and structurally complex white matter
- The two-pool parameter assumptions and the inverse linear dependence may not hold below 0.55 T and/or beyond 7 T
- Nevertheless, the study furthers understanding of B₀ dependence of T₁ and demonstrates the close relation between T₁ and MT

Please also check out our recent publication for analysis in gray matter structures:

Wang Y, van Gelderen P, de Zwart JA, Duyn JH. BO-field dependence of MRI T1 relaxation in human brain. NeuroImage 2020;213:116700

Acknowledgments

- The research was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH).
- Assistance of Siemens Healthcare in the modification of the MRI system for operation at 0.55 T under an existing cooperative research agreement (CRADA) between National Heart, Lung, and Blood Institute (NHLBI) and Siemens Healthcare.
- Adrienne Campbell-Washburn for use of 0.55 T; John Butman for use of 1.5 T; Susan Guttman and Steven Newman for assistance with experiments; Jiaen Liu, Hendrik Mandelkow and Alan Koretsky for constructive discussions
- Anonymous reviewers for Wang et al., NeuroImage 2020;213:116700

Thank you for your attention! Please direct comments to yicun.wang@nih.gov