Reducing Motion Sensitivity in 3D High-resolution T_2^* -weighted and QSM MRI **By Navigator-based Motion and Nonlinear Magnetic Field Correction**

Jiaen Liu, Peter van Gelderen, Pinar S. Özbay, Jacco A. de Zwart and Jeff H. Duyn

Section of Advanced MRI, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, USA

Introduction

- \succ T₂*- or susceptibility-weighted MRI provides clinically relevant information about the iron and myelin content in the brain.
- > These techniques are sensitive to motion and motion-related B_0 changes, which complicate their use for clinical practice.
- \succ Correcting for pose-dependent B₀ field changes has not been addressed in conventional MRI motion correction.
- > In this study, a navigator (built on MR signal)-based approach was proposed to simultaneously correct for motion and B_0 field changes in T_2^* -weighted GRE.

Methods	S		
Navigator for motion & B ₀ measurement	RF		

Susceptibility sources causing pose-dependent B₀ distribution

Correction performance across all subjects

Results

Figure 3 Improvement using motion and more sophisticated B_0 correction across all subjects (N=6) as quantified by the normalized root mean square error (NRMSE) of the corrected GRE magnitude relative to the reference GRE magnitude. STEEN at 4 mm resolution was used.

- STEEN: Short <u>TE</u> (echo time) volumetric <u>EPI</u> <u>Navigator</u>
- Acquired STEEN signal in parallel with highresolution T_2^* -weighted GRE data
- Accelerated STEEN with parallel imaging
- \succ Temporal resolution of 0.54 s at 4 mm resolution with a FOV of 240x192x96 mm³ and TR of 45 ms

□ Image correction

resolution T_2^* -weighted GRE data in each TR

- Corrected GRE images in the reconstruction retrospectively with STEEN-measured motion and B_0 change information
- > Developed a fast clustering-based retrospective algorithm to compensate for the nonlinear component in the B_0 changes
 - Clustered the GRE data based on the STEEN-measured B_0 to correct for the nonlinear B_0 changes across clusters, and motion and linear B_0 changes within each cluster using the fast NUFFT algorithm[1]
 - Needed less than 10 clusters (determined automatically based on the B_0 data) in all cases in this study

☐ Experiment design & data analysis

- \geq 7 T MRI (Siemens) with 32-channel head RF coil (Nova Medical)
- \succ Evaluated STEEN accuracy for measuring motion and B₀ changes using concurrently measured GRE

Examples of corrected GRE and QSM

- Changed head pose in-between scans without intra-scan movement
- Isotropic 2 mm resolution GRE with isotropic 4 mm and 6 mm (downsampled from the 4 mm) resolution STEEN for evaluating STEEN accuracy (3.5-minute long)
- > Evaluated the correction performance on GRE images acquired with intentional motion
 - Performed head movement guided by visual cues during scans
 - 0.5x0.5x1.5 mm³ resolution GRE with TE=26 ms for correction (9.5-minute long)
 - Reconstructed quantitative susceptibility maps (QSM) based on the GRE phase[2]
 - Evaluated the corrected images in reference to the images from a separate scan without intentional motion

Results

□ Accuracy of STEEN for measuring head motion and B₀ changes

Figure 2 Root mean square error (RMSE) (a and b) and error distribution (c) of STEEN-estimated motion and B₀ changes, respectively (N=6), for 4 and 6 mm isotropic resolution STEEN. In (c), bars indicate the 2.5-97.5% percentile interval and boxes the 10-90% percentile interval.

Figure 4 T₂*-weighted GRE magnitude (first row) and QSM (second row) under different correction modes from Subject 4 (top) and Subject 6 (bottom): Global B_0 – zero-order B_0 correction, MoCo – motion correction, MoCo & Lin. B_0 – motion and linear B_0 correction and *MoCo* & *NL* B_0 – motion and nonlinear B_0 correction.

Conclusion		
 Developed a Short <u>TE EPI volumetric Navigator (STEEN)</u> with high temporal (~0.5 s) and spatial resolution (4 mm) for measuring head motion and B₀ changes in 3D T₂[*]-weighted GRE Demonstrated high accuracy of STEEN for measuring motion (0.2%).1 mm) and B₀ changes (2 Hz@7T) 	 Implemented a fast motion and nonlinear B₀ correction algorithm in the GRE reconstruction Significantly reduced artifact in high-resolution T₂*-weighted GRE and QSM using the proposed method 	

Reference [1] Fesslor and Sutton. IEEE Trans Signal Process. 2003 [2] Özbay et al., NMR Biomed, 2015