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Introduction

MRI can be used for the study of dynamic processes (e.g. brain activation)
through acquisition of time series data. Such data can however be affected
by quasi-periodic events unrelated to the process being investigated.
Potential artifact mechanisms are blood flow pulsations related to the cardi-
ac cycle (CC), and tissue motion and changes in local magnetic field relat-
ed to the respiratory cycle (RC). This not only reduces the statistical power
of fMRI experiments, but also causes temporal signal correlation of other-
wise uncorrelated cortical areas, affecting interpretation of fMRI studies of
event-related activity or neuronal connectivity.

Methods for reducing artifacts related to CC and RC have been suggest-
ed, e.g. band rejection filtering [1]. However, CC and RC are typically tem-
porally undersampled, complicating the separation of desired from unde-
sired signals. Glover et al. proposed a method (RETROICOR) which
operates in image domain and models CC and RC by Fourier-series fitting
[2]. Here a model-free variation of this approach is presented, which per-
forms selective averaging to derive an estimate of CC- and RC-related arti-
facts. The method is validated by evaluating its performance relative to
RETROICOR.

Methods
An estimate of the temporal characteristics of the artifact can be obtained
with a precision that exceeds the temporal resolution of the MRI| data acqui-
sition by sorting and averaging of the acquired MRI data based on their
acquisition time relative to the nearest artifact occurrence (‘event’) (Fig. 1).
The period encompassing each event is subdivided in a number of discrete
intervals (‘bins’). All MRI data with acquisition times falling within the same
bin are averaged on a voxel-by-voxel basis, resulting in suppression of sig-
nals whose timing does not correlate with artifact events, while amplifying
signals that correlate with the artifact. The resulting data are referred to as
‘artifact estimate’, from which DC signal is removed. Finally, each bin in ‘ar-
tifact estimate’ is subtracted from all MRI| data that had been assigned to
this bin based on their acquisition time relative to the nearest artifact event.
Performance was evaluated on a GE 3 T scanner. Two datasets were
acquired on each volunteer (n=6): a 17-slice dataset with 1.7 s TR and 90°
flip angle (366 volumes; 622.2 s acquisition time; 45 ms TE; 2.3x2.3x3.0
mm?3 nominal resolution; labeled ‘slow’), resembling a typical fMRI experi-
ment, and a single-slice dataset (100 ms TR; 6222 volumes; 15° flip angle;
referred to as ‘fast’), aligned to the center slice of ‘slow’, which ensured
unaliased acquisition of CC- and RC-related artifacts. CC and RC were
recorded using a pulse oximeter and respiratory bellow (1 kHz sampling).
For comparison, data were separately filtered with RETROICOR (a C-
Implementation was obtained from the Radiological Sciences Lab at
Stanford) but otherwise processed identically.
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Figure 1. Schematic representation of the filtering method. Both the cardiac cycle (CC) and
respiratory cycle (RC) are subdivided into bins. In the example shown here, 8 bins are used for
both cardiac and respiratory filtering. Information about CC and RC timing is derived from
physiological monitoring data. Filtering for CC and RC is performed independently. MRI data
are assigned to a bin based on their acquisition time relative to the nearest event.
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Figure 2: Plot of relative SD, as function of the number of bins. Red represents CC-, blue RC-
fitered data. Symbols are the computed relative SD, values as a function of the number of
bins, the solid lines the result of 16-fold smoothing.

Results

Temporal standard deviation (SD,) after filtering was computed, corrected
for reduced degrees of freedom, and compared to SD, before filtering as a
measure of filtering performance. ‘Slow’ data were filtered with a range of

numbers of bins (Fig. 2), an optimum of 40 for CC and 21 for RC was found.

Performance of ‘fast’ was evaluated by computing the average spectral
iIntensity in the frequency band containing the prinicipal CC or RC artifact.
Example spectra for a single voxel are shown in Fig. 3. Maps of average
spectral intensity before and after filtering are shown in Fig. 4 for one volun-
teer. In addition, ‘fast’ data were filtered as 17 independent subsets (e.g.
volumes [1,18,35,...,6121]), resembling ‘slow’, before being recombined.
This demonstrates that a similar level of artifact suppression can be
obtained when the artifact is undersampled (additional peaks at n/1.7 Hz
are caused by small differences in baseline correction for each subset).

The level of artifact suppression in all volunteers (867 voxels for CC,
2064 for RC, of which 275 in both CC and RC) is shown in Fig. 5, both for
our method and for RETROICOR. Artifact is suppressed to approximately
noise level in most CC- and a large number of RC-voxels. Voxels that per-
form poorly in our method typically also perform poorly in RETROICOR,
suggesting that the remaining spectral intensity might be unrelated to CC or
RC (e.g. presence of low-frequency fluctuations in RC band, see Fig. 3).
Average SD, reduction in CC voxels was 12.5% for ‘slow’ (up to 55.7%) and
9.6% for ‘fast’ (up to 63.3%), compared to 6.3% and 7.8% respectively for
RETROICOR. For RC voxels, improvement was 9.3% for ‘slow’ (up to
52.9%) and 4.9% for ‘fast’ (up to 25.2%), compared to 8.0% and 4.1% with
RETROICOR. Data filtered for both CC and RC (275 voxels) showed
iImprovement of 13.2% for ‘slow’ and 9.0% for ‘fast’, RETROICOR vyielded
8.2% in both cases.
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Figure 3: Single-pixel frequency spectra for a ‘fast’ scan, obtained before and after filtering.
The top-left plot shows the frequency spectrum for a pixel in the unfiltered dataset. The top-
right plot shows the same pixel after application of only the cardiac filter, the lower-left plot
respiratory-only filtered data. The lower-right plot shows the frequency spectrum after applica-
tion of both filters. The blue line, offset 0.15 units along Y, is the result of filtering for cardiac
and respiratory artifacts after splitting the data in 17 subsets (see text for details).
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Figure 4: Maps of artifact intensity before and after filtering for a ‘fast’ scan, showing the aver-
age intensity in a frequency band surrounding the principal artifact frequency in the magnitude
spectrum before (left column) and after (center and right column) filtering. The top row shows
cardiac (1.18-1.48 Hz for this volunteer), the bottom row for respiratory (here: 0.20-0.50 Hz).
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Conclusion

A model-free, flexible, adaptive filter for MRI time series data has been
demonstrated in an fMRI-like setting. It provides artifact suppression to
noise level with no significant effect on signals unrelated to the cardiac and
respiratory cycle, even when these artifacts are undersampled in the MRI
data acquisition. Under the current experimental conditions and for the level
of variation in CC and RC encountered during these experiments the per-
formance of this method is at least equivalent to the RETROICOR method.
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Figure 5: Plots of the achieved artifact reduction for all voxels with a significant cardiac (top
row) or respiratory (bottom row) artifact in the 6 volunteers. Data are based on the decrease in
average spectral intensity in a 0.15 Hz band encompassing the principal cardiac artifact fre-
quency. The dotted line represents the artifact level before filtering. It is a decreasing curve
since voxels were sorted on pre-filtering artifact intensity. The horizontal line at 1 SD indicates
noise level. The solid line shows the artifact intensity in the same frequency band after filtering.
Left column shows the result of filtering with the method described here, right column the
result obtained using the RETROICOR method [2].



